Роль углеводов в восстановлении организма после нагрузок

12.03.2020

  • Burke L. Postexercise muscle glycogen resynthesis in humans.
  • Burke L. The Governor has a sweet tooth - mouth sensing of nutrients to enhance sports performance.
  • Dunford M. Sports Nutrition: A Practice Manual for Professionals.
  • Burke L. Postexercise muscle glycogen resynthesis in humans.
  • Philp A. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise.
  • Ahlborg B. Immediate and delayed metabolic reactions in well-trained subjects after prolonged physical exercise.
  • Pascoe D. Glycogen resynthesis in skeletal muscle following resistive exercise.
  • Tesch P. Muscle metabolism during intense, heavy-resistance exercise.
  • Knuiman P. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise.
  • Camera D. Resistance exercise with low glycogen increases p53 phosphorylation and PGC-1α mRNA in skeletal muscle.
  • Raymond D. Effects of diet on muscle triglyceride and endurance performance.
  • Louise M. Postexercise muscle glycogen resynthesis in humans.
  • Dunford M. Sports Nutrition: A Practice Manual for Professionals.
  • Bergström J. Diet, Muscle Glycogen and Physical Performance.
  • Asp S. Eccentric exercise decreases glucose transporter GLUT4 protein in human skeletal muscle.
  • Burke L. Postexercise muscle glycogen resynthesis in humans.
  • Blom P. Effect of different post-exercise sugar diets on the rate of muscle glycogen synthesis.
  • Baker L. Optimal composition of fluid-replacement beverages.
  • Jentjens R. High Oxidation Rates from Combined Carbohydrates Ingested during Exercise.
  • Keizer H. Influence of Liquid and Solid Meals on Muscle Glycogen Resynthesis, Plasma Fuel Hormone Response, and Maximal Physical Working Capacity.
  • Cramer M. Postexercise Glycogen Recovery and Exercise Performance is Not Significantly Different Between Fast Food and Sport Supplements.
  • Wilson P. Does Carbohydrate Intake During Endurance Running Improve Performance? A Critical Review.
  • '>

    Основы энергетического метаболизма

    Способность организма выполнять физические упражнения с высокой интенсивностью определяется возможностями его скелетных мышц запасать и восстанавливать аденозинтрифосфат (АТФ) – основной и универсальный источник энергии для мышечной работы.

    Генерирование АТФ в скелетных мышцах обеспечивается двумя путями – аэробным и анаэробным, разница в том, что первому нужен кислород, а второму – нет. К примеру, во время спринта высокий уровень продукции АТФ обеспечивается анаэробным энергетическим обменом. Но в тоже время поддержание функционирования сердца и других внутренних органов обеспечивается АТФ, который организм вырабатывает в процессе аэробного метаболизма1.

    Аэробная продукция АТФ – результат деградации внутримышечных запасов фосфокреатина (PCr) и гликогена, полимера глюкозы. По объему фосфокреатина в скелетных мышцах в 5 раз больше, чем гликогена. При этом гликоген активно разрушается во время мышечных сокращений, чтобы генерировать необходимые объемы АТФ, в результате образуются ионы лактата и водорода2. Для наглядности: во время 6-секундного спринта гликогенез (разрушение гликогена) обеспечивает 50% продукции АТФ, фосфокреатин дает еще 48%, а оставшиеся 2% обеспечиваются собственными запасами АТФ в мышцах3.

    потребление_углеводов_во_время_бега-1024x933.sAQ3h-min.jpg

    Аэробная деградация гликогена (с кислородом) происходит гораздо медленнее, чем процессы анаэробного метаболизма, но дает в 12 раз больше АТФ (примерно 36 ммоль). При окислении жирных кислот получается еще больше АТФ – до 140 ммоль, но этот процесс еще медленнее. То есть аэробный метаболизм АТФ за счет низкой скорости протекания не дает нам ничего в кратковременной интенсивной нагрузке (спринт). С другой стороны – в перерывах между нагрузками, аэробный метаболизм также отвечает за ресинтез фосфокреатина, который, как мы помним, обеспечивает мышцы половиной нужного объема АТФ. Плюс именно фосфокреатин позволяет работать под пиковой кратковременной нагрузкой.

    Нюанс в том, что у тренированных спортсменов организм учится эффективнее использовать аэробные процессы восстановления АТФ во время длительных нагрузок, поэтому профессиональные бегуны могут бежать значительно дольше любителей4,5. Причем здесь углеводы? А притом, что именно они обеспечивают формирование гликогенового пула для генерирования АТФ и обеспечения интенсивной мышечной работы.

    Углеводы и мышечная активность

    Первые исследования, проведенные еще в 1920-х годах, показали, что: а) углеводы нужны для мышечной работы6, б) концентрация глюкозы в крови коррелирует с накоплением усталости во время фарафона7, в) дополнительный прием углеводов до и во время марафона отодвигает момент наступления мышечной усталости8.

    Спустя почти 100 лет ученые, наконец, смогли объяснить, почему так происходит. Есть целый ряд механизмов, например – дефицит гликогена в саркоплазматической сети мышц пропорционально ухудшает их сократительную способность9,10. Также истощение гликогена в условиях гипогликемии, вызванной физической активностью, снижает скорость доставки глюкозы в мозг, что замедляет работу нервной системы11. Подтверждающие эксперименты показали, что дополнительный прием углеводов во время тренировки влияет в том числе на восприятие нагрузок – спортсмены, принимавшие углеводную добавку, охотнее выполняли новые упражнения, чем группа, принимавшая плацебо12.

    Сегодня рядом экспериментов подтверждено, что достаточное количество углеводов в рационе, плюс их дополнительный прием во время и после тренировки увеличивает ее продолжительность и позволяет быстрее восстанавливаться13,14,15. Любопытно, что для достижения требуемого эффекта не обязательно употреблять углеводы в пищу – достаточно полоскать ротовую полостью углеводным раствором16. Также доказано, что ключевой фактор работоспособности во время тренировки – достаточный запас гликогена в мышцах, а его ресинтез напрямую влияет на общее восстановление и работоспособность17,18.

    Роль гликогена в тренировочном процессе

    В среднем в организме взрослого человека 600 гр гликогена – параметр зависит от антропометрии, веса, возраста, общей физической активности. Еще имеет значение, была ли недавно (в пределах 1-2 дней) тренировка – в ближайшее время после тренировки запасы гликогена ниже19.

    Во время интенсивной мышечной работы запасы гликогена закономерно снижаются20. Что касается гликогена в печени, то его объем меняется постоянно в течение дня и зависит в том числе от распорядка приемов пищи. При этом доказано, что хотя мышечный и печеночный гликоген вместе составляют лишь 4% энергетических запасов организма, именно мышечный гликоген расходуется на обеспечение физической активности средней и продолжительной интенсивности21,22.

    Важно, что гликоген – это не только топливо, но и топливный датчик – он регулирует сигнальные пути, обеспечивающие адаптацию к физическим нагрузкам23,24. Улучшение физической формы посредством тренировок приводит к суперкомпенсации гликогена – его запасы полностью восстанавливаются в период 24-48 часов и у профессиональных спортсменов со временем предел содержания гликогена в мышцах увеличивается25.

    Мышечный гликоген, который восстанавливается употреблением углеводов, выступает важным субстратом в тренировках с отягощением, при которых его уровень может снижаться на 20-40% от изначального26,27.Однако исследования показывают, что низкий уровень гликогена никак не влияет на синтез мышечного белка и факторы анаболизма28,29.

    img_0641_03.LdaET-min.png

    Экспериментально подтверждено, что для полного восстановления гликогена после тренировки в течение 24 часов необходимо употреблять 9,8 гр углеводов на 1 кг массы тела – такой режим восстанавливает 93% гликогена, затраченного на 2-часовой бег при maxVO2 65%30. Низкоуглеводная диета (1,9 гр углеводов на 1 кг массы тела) восстановила только 13% израсходованного гликогена. В тоже время необходимость восстановить объем гликогена определяется активностью и продолжительностью тренинга. Дело в том, что у синтеза гликогена есть максимальный предел по скорости – 10 ммоль/кг/час, то есть при достаточном употреблении углеводов в течение суток истощение гликогена на уровне 40 ммоль/кг восстанавливается за 4-5 часов. Если же истощение гликогена составляло 150 ммоль/кг, в этом случае для восполнения до исходного уровня необходимо не меньше 24 часов31,32.

    Для суперкомпенсации гликогена необходимо 24-72 часа отдыха при дневном рационе 8-10 гр углеводов на 1 кг массы тела33. При этом если имело место повреждение мышц и запустились процессы мышечной гипертрофии, восстановление гликогена замедляется сильнее34.

    Углеводы для восстановления

    Мета-анализ имеющихся исследований показывает, что для долгосрочного восстановления гликогена (более 24 часов) тип и время приема углеводов не имеют значения, важен только общий объем, который должен покрывать расход во время тренировки35. Однако экспериментально подтверждено, что фруктоза быстрее других углеводов восстанавливает печеночный гликоген, а глюкоза – мышечный36.

    Хотя большинство людей при своей обычной диете потребляют достаточное количество глюкозы и фруктозы из пищи, коктейли, представляющие смесь глюкозы, фруктозы и сахарозы, употребляемые во время и после тренировок, увеличивают скорость абсорбции жидкости из проксимального отдела тонкой кишки и повышают скорость окисления углеводов во время упражнений, то есть стимулируют два важнейших фактора для поддержания работоспособности37,38. При этом форма углеводной смеси (жидкая или твердая) не имеет значения39.

    Углеводы для производительности

    В 2016 году издание Journal of Strength and Conditioning Research провело обзор исследований по вопросу влияния употребления углеводов на производительность спортсменов во время тренировок41. Все эксперименты, включенные в обзор, – это тренировки средней и высокой интенсивности, длительностью более 60 минут. Всего проведено 30 экспериментов, в которых приняли участие 76 женщин и 505 мужчин.

    Группы добровольцев, употреблявшие во время тренировки углеводные смеси, показали лучший результат, чем группы, употреблявшие плацебо. Однако статистически значимый прирост производительности наблюдался только при длительных забегах – более 2 часов, при более коротком беге (90-120 минут) эффект был значительно ниже, а для 60-минутной тренировки разницы вообще не было.

    Также исследования показали, что если углеводы употребляются по принципу «во время тренировки» без продуманного плана дневного рациона, такой подход почти никогда не приводит к повышению производительности и даже может вызвать дисфункции ЖКТ. Популярные на рынке легкой атлетики углеводные гели ни в одном из экспериментов не дали прибавку производительности. Однако при беге длительностью более 2 часов углеводная смесь, употребляемая в объеме 1,3 гр в минуту, дала значимый прирост. При этом лучший результат показала комбинация фруктоза + глюкоза.

    Потенциально эти эксперименты подтвердили, что употребление углеводов во время тренировки задействует следующие механизмы – сохраняет мышечный гликоген, стимулирует центральную нервную систему, предотвращает падение уровня глюкозы в крови.

    Выводы

    Научные исследования показывают, что ключевой фактор восстановления после тренировки – достаточное количество углеводов в дневном рационе, а не время их употребления. Тем не менее, дополнительный прием углеводов во время бега действительно повышает производительность, а прием углеводных коктейлей после силовых упражнений ускоряет ресинтез гликогена.

    1. Williams C. Carbohydrate Nutrition and Team Sport Performance.
    2. Girard O. Repeated-sprint ability - part I: factors contributing to fatigue.
    3. Cheetham M. Human muscle metabolism during sprint running.
    4. Balsom P. High-intensity exercise and muscle glycogen availability in humans.
    5. Parolin M. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise.
    6. Krogh A. The Relative Value of Fat and Carbohydrate as Sources of Muscular Energy: With Appendices on the Correlation between Standard Metabolism and the Respiratory Quotient during Rest and Work.
    7. Samuel A. SOME CHANGES IN THE CHEMICAL CONSTITUENTS OF THE BLOOD FOLLOWING A MARATHON RACE WITH SPECIAL REFERENCE TO THE DEVELOPMENT OF HYPOGLYCEMIA.
    8. Burgess G. SUGAR CONTENT OF THE BLOOD IN RUNNERS FOLLOWING A MARATHON RACE WITH ESPECIAL REFERENCE TO THE PREVENTION OF HYPOGLYCEMIA: FURTHER OBSERVATIONS.
    9. Nielsen J. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type.
    10. Gejl K. Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes.
    11. Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation.
    12. Backhouse S. Carbohydrate ingestion during prolonged high-intensity intermittent exercise: impact on affect and perceived exertion.
    13. Hawley J. Carbohydrate Dependence During Prolonged, Intense Endurance Exercise.
    14. Nutrition and Athletic Performance.
    15. Chung M. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis.
    16. Burke L. The Governor has a sweet tooth - mouth sensing of nutrients to enhance sports performance.
    17. Nutrition and Athletic Performance.
    18. Burke L. Postexercise muscle glycogen resynthesis in humans.
    19. Farrell P. ACSM's advanced exercise physiology: Second edition.
    20. Burke L. Postexercise muscle glycogen resynthesis in humans.
    21. Burke L. The Governor has a sweet tooth - mouth sensing of nutrients to enhance sports performance.
    22. Dunford M. Sports Nutrition: A Practice Manual for Professionals.
    23. Burke L. Postexercise muscle glycogen resynthesis in humans.
    24. Philp A. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise.
    25. Ahlborg B. Immediate and delayed metabolic reactions in well-trained subjects after prolonged physical exercise.
    26. Pascoe D. Glycogen resynthesis in skeletal muscle following resistive exercise.
    27. Tesch P. Muscle metabolism during intense, heavy-resistance exercise.
    28. Knuiman P. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise.
    29. Camera D. Resistance exercise with low glycogen increases p53 phosphorylation and PGC-1α mRNA in skeletal muscle.
    30. Raymond D. Effects of diet on muscle triglyceride and endurance performance.
    31. Louise M. Postexercise muscle glycogen resynthesis in humans.
    32. Dunford M. Sports Nutrition: A Practice Manual for Professionals.
    33. Bergström J. Diet, Muscle Glycogen and Physical Performance.
    34. Asp S. Eccentric exercise decreases glucose transporter GLUT4 protein in human skeletal muscle.
    35. Burke L. Postexercise muscle glycogen resynthesis in humans.
    36. Blom P. Effect of different post-exercise sugar diets on the rate of muscle glycogen synthesis.
    37. Baker L. Optimal composition of fluid-replacement beverages.
    38. Jentjens R. High Oxidation Rates from Combined Carbohydrates Ingested during Exercise.
    39. Keizer H. Influence of Liquid and Solid Meals on Muscle Glycogen Resynthesis, Plasma Fuel Hormone Response, and Maximal Physical Working Capacity.
    40. Cramer M. Postexercise Glycogen Recovery and Exercise Performance is Not Significantly Different Between Fast Food and Sport Supplements.
    41. Wilson P. Does Carbohydrate Intake During Endurance Running Improve Performance? A Critical Review.


    Возврат к списку

    *********************************
    'api:main.feedback' is not a component