Роль углеводов в восстановлении организма после нагрузок
Основы энергетического метаболизма
Способность организма выполнять физические упражнения с высокой интенсивностью определяется возможностями его скелетных мышц запасать и восстанавливать аденозинтрифосфат (АТФ) – основной и универсальный источник энергии для мышечной работы.
Генерирование АТФ в скелетных мышцах обеспечивается двумя путями – аэробным и анаэробным, разница в том, что первому нужен кислород, а второму – нет. К примеру, во время спринта высокий уровень продукции АТФ обеспечивается анаэробным энергетическим обменом. Но в тоже время поддержание функционирования сердца и других внутренних органов обеспечивается АТФ, который организм вырабатывает в процессе аэробного метаболизма1.
Аэробная продукция АТФ – результат деградации внутримышечных запасов фосфокреатина (PCr) и гликогена, полимера глюкозы. По объему фосфокреатина в скелетных мышцах в 5 раз больше, чем гликогена. При этом гликоген активно разрушается во время мышечных сокращений, чтобы генерировать необходимые объемы АТФ, в результате образуются ионы лактата и водорода2. Для наглядности: во время 6-секундного спринта гликогенез (разрушение гликогена) обеспечивает 50% продукции АТФ, фосфокреатин дает еще 48%, а оставшиеся 2% обеспечиваются собственными запасами АТФ в мышцах3.
Аэробная деградация гликогена (с кислородом) происходит гораздо медленнее, чем процессы анаэробного метаболизма, но дает в 12 раз больше АТФ (примерно 36 ммоль). При окислении жирных кислот получается еще больше АТФ – до 140 ммоль, но этот процесс еще медленнее. То есть аэробный метаболизм АТФ за счет низкой скорости протекания не дает нам ничего в кратковременной интенсивной нагрузке (спринт). С другой стороны – в перерывах между нагрузками, аэробный метаболизм также отвечает за ресинтез фосфокреатина, который, как мы помним, обеспечивает мышцы половиной нужного объема АТФ. Плюс именно фосфокреатин позволяет работать под пиковой кратковременной нагрузкой.
Нюанс в том, что у тренированных спортсменов организм учится эффективнее использовать аэробные процессы восстановления АТФ во время длительных нагрузок, поэтому профессиональные бегуны могут бежать значительно дольше любителей4,5. Причем здесь углеводы? А притом, что именно они обеспечивают формирование гликогенового пула для генерирования АТФ и обеспечения интенсивной мышечной работы.
Углеводы и мышечная активность
Первые исследования, проведенные еще в 1920-х годах, показали, что: а) углеводы нужны для мышечной работы6, б) концентрация глюкозы в крови коррелирует с накоплением усталости во время фарафона7, в) дополнительный прием углеводов до и во время марафона отодвигает момент наступления мышечной усталости8.
Спустя почти 100 лет ученые, наконец, смогли объяснить, почему так происходит. Есть целый ряд механизмов, например – дефицит гликогена в саркоплазматической сети мышц пропорционально ухудшает их сократительную способность9,10. Также истощение гликогена в условиях гипогликемии, вызванной физической активностью, снижает скорость доставки глюкозы в мозг, что замедляет работу нервной системы11. Подтверждающие эксперименты показали, что дополнительный прием углеводов во время тренировки влияет в том числе на восприятие нагрузок – спортсмены, принимавшие углеводную добавку, охотнее выполняли новые упражнения, чем группа, принимавшая плацебо12.
Сегодня рядом экспериментов подтверждено, что достаточное количество углеводов в рационе, плюс их дополнительный прием во время и после тренировки увеличивает ее продолжительность и позволяет быстрее восстанавливаться13,14,15. Любопытно, что для достижения требуемого эффекта не обязательно употреблять углеводы в пищу – достаточно полоскать ротовую полостью углеводным раствором16. Также доказано, что ключевой фактор работоспособности во время тренировки – достаточный запас гликогена в мышцах, а его ресинтез напрямую влияет на общее восстановление и работоспособность17,18.
Роль гликогена в тренировочном процессе
В среднем в организме взрослого человека 600 гр гликогена – параметр зависит от антропометрии, веса, возраста, общей физической активности. Еще имеет значение, была ли недавно (в пределах 1-2 дней) тренировка – в ближайшее время после тренировки запасы гликогена ниже19.
Во время интенсивной мышечной работы запасы гликогена закономерно снижаются20. Что касается гликогена в печени, то его объем меняется постоянно в течение дня и зависит в том числе от распорядка приемов пищи. При этом доказано, что хотя мышечный и печеночный гликоген вместе составляют лишь 4% энергетических запасов организма, именно мышечный гликоген расходуется на обеспечение физической активности средней и продолжительной интенсивности21,22.
Важно, что гликоген – это не только топливо, но и топливный датчик – он регулирует сигнальные пути, обеспечивающие адаптацию к физическим нагрузкам23,24. Улучшение физической формы посредством тренировок приводит к суперкомпенсации гликогена – его запасы полностью восстанавливаются в период 24-48 часов и у профессиональных спортсменов со временем предел содержания гликогена в мышцах увеличивается25.
Мышечный гликоген, который восстанавливается употреблением углеводов, выступает важным субстратом в тренировках с отягощением, при которых его уровень может снижаться на 20-40% от изначального26,27.Однако исследования показывают, что низкий уровень гликогена никак не влияет на синтез мышечного белка и факторы анаболизма28,29.
Экспериментально подтверждено, что для полного восстановления гликогена после тренировки в течение 24 часов необходимо употреблять 9,8 гр углеводов на 1 кг массы тела – такой режим восстанавливает 93% гликогена, затраченного на 2-часовой бег при maxVO2 65%30. Низкоуглеводная диета (1,9 гр углеводов на 1 кг массы тела) восстановила только 13% израсходованного гликогена. В тоже время необходимость восстановить объем гликогена определяется активностью и продолжительностью тренинга. Дело в том, что у синтеза гликогена есть максимальный предел по скорости – 10 ммоль/кг/час, то есть при достаточном употреблении углеводов в течение суток истощение гликогена на уровне 40 ммоль/кг восстанавливается за 4-5 часов. Если же истощение гликогена составляло 150 ммоль/кг, в этом случае для восполнения до исходного уровня необходимо не меньше 24 часов31,32.
Для суперкомпенсации гликогена необходимо 24-72 часа отдыха при дневном рационе 8-10 гр углеводов на 1 кг массы тела33. При этом если имело место повреждение мышц и запустились процессы мышечной гипертрофии, восстановление гликогена замедляется сильнее34.
Углеводы для восстановления
Мета-анализ имеющихся исследований показывает, что для долгосрочного восстановления гликогена (более 24 часов) тип и время приема углеводов не имеют значения, важен только общий объем, который должен покрывать расход во время тренировки35. Однако экспериментально подтверждено, что фруктоза быстрее других углеводов восстанавливает печеночный гликоген, а глюкоза – мышечный36.
Хотя большинство людей при своей обычной диете потребляют достаточное количество глюкозы и фруктозы из пищи, коктейли, представляющие смесь глюкозы, фруктозы и сахарозы, употребляемые во время и после тренировок, увеличивают скорость абсорбции жидкости из проксимального отдела тонкой кишки и повышают скорость окисления углеводов во время упражнений, то есть стимулируют два важнейших фактора для поддержания работоспособности37,38. При этом форма углеводной смеси (жидкая или твердая) не имеет значения39.
Углеводы для производительности
В 2016 году издание Journal of Strength and Conditioning Research провело обзор исследований по вопросу влияния употребления углеводов на производительность спортсменов во время тренировок41. Все эксперименты, включенные в обзор, – это тренировки средней и высокой интенсивности, длительностью более 60 минут. Всего проведено 30 экспериментов, в которых приняли участие 76 женщин и 505 мужчин.
Группы добровольцев, употреблявшие во время тренировки углеводные смеси, показали лучший результат, чем группы, употреблявшие плацебо. Однако статистически значимый прирост производительности наблюдался только при длительных забегах – более 2 часов, при более коротком беге (90-120 минут) эффект был значительно ниже, а для 60-минутной тренировки разницы вообще не было.
Также исследования показали, что если углеводы употребляются по принципу «во время тренировки» без продуманного плана дневного рациона, такой подход почти никогда не приводит к повышению производительности и даже может вызвать дисфункции ЖКТ. Популярные на рынке легкой атлетики углеводные гели ни в одном из экспериментов не дали прибавку производительности. Однако при беге длительностью более 2 часов углеводная смесь, употребляемая в объеме 1,3 гр в минуту, дала значимый прирост. При этом лучший результат показала комбинация фруктоза + глюкоза.
Потенциально эти эксперименты подтвердили, что употребление углеводов во время тренировки задействует следующие механизмы – сохраняет мышечный гликоген, стимулирует центральную нервную систему, предотвращает падение уровня глюкозы в крови.
Выводы
Научные исследования показывают, что ключевой фактор восстановления после тренировки – достаточное количество углеводов в дневном рационе, а не время их употребления. Тем не менее, дополнительный прием углеводов во время бега действительно повышает производительность, а прием углеводных коктейлей после силовых упражнений ускоряет ресинтез гликогена.
- Williams C. Carbohydrate Nutrition and Team Sport Performance.
- Girard O. Repeated-sprint ability - part I: factors contributing to fatigue.
- Cheetham M. Human muscle metabolism during sprint running.
- Balsom P. High-intensity exercise and muscle glycogen availability in humans.
- Parolin M. Regulation of skeletal muscle glycogen phosphorylase and PDH during maximal intermittent exercise.
- Krogh A. The Relative Value of Fat and Carbohydrate as Sources of Muscular Energy: With Appendices on the Correlation between Standard Metabolism and the Respiratory Quotient during Rest and Work.
- Samuel A. SOME CHANGES IN THE CHEMICAL CONSTITUENTS OF THE BLOOD FOLLOWING A MARATHON RACE WITH SPECIAL REFERENCE TO THE DEVELOPMENT OF HYPOGLYCEMIA.
- Burgess G. SUGAR CONTENT OF THE BLOOD IN RUNNERS FOLLOWING A MARATHON RACE WITH ESPECIAL REFERENCE TO THE PREVENTION OF HYPOGLYCEMIA: FURTHER OBSERVATIONS.
- Nielsen J. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type.
- Gejl K. Muscle glycogen content modifies SR Ca2+ release rate in elite endurance athletes.
- Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation.
- Backhouse S. Carbohydrate ingestion during prolonged high-intensity intermittent exercise: impact on affect and perceived exertion.
- Hawley J. Carbohydrate Dependence During Prolonged, Intense Endurance Exercise.
- Nutrition and Athletic Performance.
- Chung M. Fructose, high-fructose corn syrup, sucrose, and nonalcoholic fatty liver disease or indexes of liver health: a systematic review and meta-analysis.
- Burke L. The Governor has a sweet tooth - mouth sensing of nutrients to enhance sports performance.
- Nutrition and Athletic Performance.
- Burke L. Postexercise muscle glycogen resynthesis in humans.
- Farrell P. ACSM's advanced exercise physiology: Second edition.
- Burke L. Postexercise muscle glycogen resynthesis in humans.
- Burke L. The Governor has a sweet tooth - mouth sensing of nutrients to enhance sports performance.
- Dunford M. Sports Nutrition: A Practice Manual for Professionals.
- Burke L. Postexercise muscle glycogen resynthesis in humans.
- Philp A. More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise.
- Ahlborg B. Immediate and delayed metabolic reactions in well-trained subjects after prolonged physical exercise.
- Pascoe D. Glycogen resynthesis in skeletal muscle following resistive exercise.
- Tesch P. Muscle metabolism during intense, heavy-resistance exercise.
- Knuiman P. Glycogen availability and skeletal muscle adaptations with endurance and resistance exercise.
- Camera D. Resistance exercise with low glycogen increases p53 phosphorylation and PGC-1α mRNA in skeletal muscle.
- Raymond D. Effects of diet on muscle triglyceride and endurance performance.
- Louise M. Postexercise muscle glycogen resynthesis in humans.
- Dunford M. Sports Nutrition: A Practice Manual for Professionals.
- Bergström J. Diet, Muscle Glycogen and Physical Performance.
- Asp S. Eccentric exercise decreases glucose transporter GLUT4 protein in human skeletal muscle.
- Burke L. Postexercise muscle glycogen resynthesis in humans.
- Blom P. Effect of different post-exercise sugar diets on the rate of muscle glycogen synthesis.
- Baker L. Optimal composition of fluid-replacement beverages.
- Jentjens R. High Oxidation Rates from Combined Carbohydrates Ingested during Exercise.
- Keizer H. Influence of Liquid and Solid Meals on Muscle Glycogen Resynthesis, Plasma Fuel Hormone Response, and Maximal Physical Working Capacity.
- Cramer M. Postexercise Glycogen Recovery and Exercise Performance is Not Significantly Different Between Fast Food and Sport Supplements.
- Wilson P. Does Carbohydrate Intake During Endurance Running Improve Performance? A Critical Review.